Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis.
نویسندگان
چکیده
Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.
منابع مشابه
The Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in Arabidopsis.
Plant cell elongation is controlled by endogenous hormones, including brassinosteroid (BR) and gibberellin (GA), and by environmental factors, such as light/darkness. The molecular mechanisms underlying the convergence of these signals that govern cell growth remain largely unknown. We previously showed that the chromatin-remodeling factor PICKLE/ENHANCED PHOTOMORPHOGENIC1 (PKL/EPP1) represses ...
متن کاملThe Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in ArabidopsisC
Plant cell elongation is controlled by endogenous hormones, including brassinosteroid (BR) and gibberellin (GA), and by environmental factors, such as light/darkness. The molecular mechanisms underlying the convergence of these signals that govern cell growth remain largely unknown. We previously showed that the chromatin-remodeling factor PICKLE/ ENHANCED PHOTOMORPHOGENIC1 (PKL/EPP1) represses...
متن کاملThe Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA
Plant development requires coordination among complex signaling networks to enhance the plant's adaptation to changing environments. DELLAs, transcription regulators originally identified as repressors of phytohormone gibberellin signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we found that DELLA i...
متن کاملCell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl
As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, ligh...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 33 شماره
صفحات -
تاریخ انتشار 2012